Abstract
An experimental investigation of the hydrodynamic stability of the laminar hypersonic boundary layer was carried out with the aid of a hot-wire anemometer. The case investigated was that of a flat surface at zero angle of attack and no heat transfer.The streamwise amplitude variation of both natural disturbances and of disturbances artifically excited with a siren mechanism was studied. In both cases it was found that such small fluctuations amplify for certain ranges of frequency and Reynolds numberRθ, and damp for others. The demarcation boundaries for the amplification (instability) zone were found to resemble the corresponding limits of boundary-layer instability at lower speeds. A ‘line of maximum amplification’ of disturbances was also found. The amplification rates and hence the degree of selectivity of the hypersonic layer were found, however, to be considerably lower than those at the lower speeds. The disturbances selected by the layer for maximum amplifications have a wavelength which was estimated to be about twenty times the boundary-layer thickness δ.

This publication has 4 references indexed in Scilit: