Unexpected Primary Reactions for Thermolysis of 1,1-Diamino-2,2-dinitroethylene (FOX-7) Revealed by ab Initio Calculations

Abstract
The primary thermolysis reactions of a promising insensitive explosive 1,1-diamino-2,2-dinitroethylene (DADNE, FOX-7) have been studied in the gas phase at a high level of theory (CCSD(T)-F12/aVTZ). Our calculations revealed that none of the conventional reactions (C–NO2 bond fission, nitro-nitrite and nitro-aci-nitro rearrangements) dominate thermolysis of FOX-7. On the contrary, two new decomposition pathways specific for this particular species that commenced with enamino–imino isomerization and intramolecular cyclization were found instead to be more feasible energetically. The activation barriers of these primary isomerization reactions were calculated to be 48.4 and 28.8 kcal/mol, while the activation energies of the overall decomposition pathways are predicted to be ∼49 and ∼56 kcal/mol, respectively. The new pathways can also be relevant for a wide series of unsaturated hydrocarbons substituted with both nitro- and amino-groups (e.g., triaminotrinitrobenzene, TATB).
Funding Information
  • Russian Foundation for Basic Research (12-03-31363)
  • Ministry of Education and Science of the Russian Federation