Synchronization of the Neural Response to Noisy Periodic Synaptic Input

Abstract
The timing information contained in the response of a neuron to noisy periodic synaptic input is analyzed for the leaky integrate-and-fire neural model. We address the question of the relationship between the timing of the synaptic inputs and the output spikes. This requires an analysis of the interspike interval distribution of the output spikes, which is obtained in the gaussian approximation. The conditional output spike density in response to noisy periodic input is evaluated as a function of the initial phase of the inputs. This enables the phase transition matrix to be calculated, which relates the phase at which the output spike is generated to the initial phase of the inputs. The interspike interval histogram and the period histogram for the neural response to ongoing periodic input are then evaluated by using the leading eigenvector of this phase transition matrix. The synchronization index of the output spikes is found to increase sharply as the inputs become synchronized. This enhancement of synchronization is most pronounced for large numbers of inputs and lower frequencies of modulation and also for rates of input near the critical input rate. However, the mutual information between the input phase of the stimulus and the timing of output spikes is found to decrease at low input rates as the number of inputs increases. The results show close agreement with those obtained from numerical simulations for large numbers of inputs.