LM-PCR Permits Highly Representative Whole Genome Amplification of DNA Isolated From Small Number of Cells and Paraffin-Embedded Tumor Tissue Sections
- 1 June 2004
- journal article
- research article
- Published by Wolters Kluwer Health in Diagnostic Molecular Pathology
- Vol. 13 (2), 105-115
- https://doi.org/10.1097/00019606-200406000-00007
Abstract
Analysis of genetic changes is often hampered by insufficient starting DNA from limited clinical tissue specimens. We employed ligation-mediated PCR (LM-PCR) for global amplification of the genome to overcome this limitation, generating up to 5 μg of representative amplicons of genomic DNA from as little as one cell. We demonstrate successful global genome amplification in high-quality starting DNA source like laser-captured cultured cells, as well as partially degraded starting DNA from old formalin-fixed paraffin-embedded tissue sections. This process generates adaptor-tailed templates that can be repeatedly amplified almost ad infinitum. We have further modified this technique such that, instead of a single endonuclease digest, we can achieve higher amplicon coverage by combining 3 endonuclease digests prior to LM-PCR. As tested by examining amplification of STS sequences scattered genome-wide, the coverage was improved from the published 70% to 96%. The faithful representation of global losses and gains in the amplified genomic DNA was confirmed by array-comparative genomic hybridization. Further, we exemplify the utility of this technique for finer p53 point mutation analysis by PCR-SSCP. This technique is thus a clinically useful tool for globally amplifying and archiving DNA from finite sources like paraffin tissue sections, providing a potentially unlimited resource for genetic analyses.Keywords
This publication has 19 references indexed in Scilit:
- Signal and noise in bridging PCRBMC Biotechnology, 2002
- High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarraysNature Genetics, 1998
- Genetic analysis using genomic representationsProceedings of the National Academy of Sciences, 1998
- Laser Capture MicrodissectionScience, 1996
- Comparative genomic hybridization: A new tool in cancer pathologyHuman Pathology, 1996
- Molecular biological analysis of paraffin-embedded tissuesHuman Pathology, 1994
- Molecular Pathology of Paraffin-Embedded Tissue Current Clinical ApplicationsDiagnostic Molecular Pathology, 1992
- Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primerGenomics, 1992
- A genetic model for colorectal tumorigenesisCell, 1990
- Molecular Biology in Medicine DNA Isolation and Southern Analysis: A Clinician’s ViewThe Lancet Healthy Longevity, 1990