Phylogenetic trees support the coevolution of parasites and their hosts

Abstract
The close correspondence often observed between the taxonomy of parasites and their hosts has led to Fahrenholz's rule, which postulates that parasites and their hosts speciate in synchrony. This leads to the prediction that phylogenetic trees of parasites and their hosts should be topologically identical. We report here a test of this prediction which involves the construction of phylogenetic trees for rodents and their ectoparasites using protein electrophoretic data. We find a high degree of concordance in the branching patterns of the trees which suggests that there is a history of cospeciation in this host-parasite assemblage. In several cases where the branching patterns were identical in the host and parasite phylogenies, the branch lengths were also very similar which, given the assumptions of molecular clock theory, strongly suggests that the speciation of these hosts and ectoparasites was roughly contemporaneous and causally related.