Non-Boltzmann rotational and inverted spin–orbit state distributions for laser-induced desorption of NO from Pt(111)

Abstract
The internal state distributions of NO desorbed from a Pt(111) surface by visible and near-visible laser radiation (355, 532, and 1064 nm) were measured by laser-induced fluorescence. Non-Boltzmann rotational state distributions and inverted spin–orbit populations were observed and both were found to be relatively insensitive to the desorption-laser wavelength. It is suggested that the internal state distributions arise from the charge exchange processes occuring during desorption via a short-lived negative-ion resonance intermediate.