Spatially controlled adhesion, spreading, and differentiation of endothelial cells on self-assembled molecular monolayers.

Abstract
Chemically modified glass substrates were used to demonstrate differential adhesion, growth, and differentiation of endothelial cells. Endothelial cells were examined for adhesion and growth on glass, glass treated with N-(2-aminoethyl)-3-aminopropyl trimethoxysilane (EDA), or EDA with a subsequent treatment with physically adsorbed extracellular matrix components human fibronectin and heparin sulfate. EDA and EDA/human fibronectin showed similar abilities to support adhesion, spreading, and proliferation of endothelial cells. In contrast, heparin sulfate inhibited endothelial cell adhesion to EDA. Differentiation of endothelial cells resulting in precapillary cord formation was triggered by addition of basic fibroblast growth factor (bFGF). On EDA and EDA/human fibronectin bFGF causes confluent endothelial cell monolayers to differentiate and form cords, which resulted in a large-scale spatial redistribution of cells on the surface. Formation of organized neovascular assemblies was demonstrated on coplanar molecular patterns of EDA and a nonadhesive perfluorinated alkylsilane (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-dimethylchloros ilane (13F). Endothelial cells preferentially adhered to the EDA lines and after 24-48 hr, microfilaments aligned with the long axes of the patterned EDA region. Finally, endothelial cells that became confluent within the confines of the EDA region (bound by the nonadhesive, 13F domains) were observed to differentiate into neovascular cords in long-term culture (7-10 days) with bFGF.