Direct aperture optimization: A turnkey solution for step‐and‐shoot IMRT
Top Cited Papers
- 13 May 2002
- journal article
- Published by Wiley in Medical Physics
- Vol. 29 (6), 1007-1018
- https://doi.org/10.1118/1.1477415
Abstract
IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach “direct aperture optimization.” This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT.Keywords
This publication has 28 references indexed in Scilit:
- Improved leaf sequencing reduces segments or monitor units needed to deliver IMRT using multileaf collimatorsMedical Physics, 2001
- Angular cost—a new concept for broad scope planning optimizationInternational Journal of Radiation Oncology*Biology*Physics, 2001
- A model for the control of a multileaf collimator in radiation therapy treatment planningInverse Problems, 2000
- Reporting and analyzing dose distributions: A concept of equivalent uniform doseMedical Physics, 1997
- Optimizing the planning of intensity-modulated radiotherapyPhysics in Medicine & Biology, 1994
- Dose calculation for photon beams with intensity modulation generated by dynamic jaw or multileaf collimationsMedical Physics, 1994
- X-ray field compensation with multileaf collimatorsInternational Journal of Radiation Oncology*Biology*Physics, 1994
- The design and performance characteristics of a multileaf collimatorPhysics in Medicine & Biology, 1994
- Combining multileaf fields to modulate fluence distributionsInternational Journal of Radiation Oncology*Biology*Physics, 1993
- Optimization by Simulated AnnealingScience, 1983