Topography of cortical projections to the dorsolateral neostriatum in rats: Multiple overlapping sensorimotor pathways

Abstract
In rodents, the whisker representation in primary somatosensory (SI) cortex projects to the dorsolateral neostriatum, but the location of these projections has never been characterized with respect to layer IV barrels and their intervening septa. To address this issue, we injected a retrograde tracer into the dorsolateral neostriatum and then reconstructed the location of the labeled corticostriatal neurons with respect to the cytochrome oxidase (CO)-labeled barrels in SI. When the tracer was restricted to a small focal site in the neostriatum, the retrogradely labeled neurons formed elongated strips that were parallel to the curvilinear orientation of layer IV barrel rows. After larger tracer injections, labeled neurons were distributed uniformly across layer V and were aligned with both the barrel and septal compartments. Labeled projections from the contralateral SI barrel cortex, however, were much fewer in number and were disproportionately associated with the septal compartments. A comparison of the labeling patterns in the ipsilateral and contralateral hemispheres revealed symmetric, mirror-image distributions that extended across primary motor cortex (MI) and multiple somatosensory cortical regions, including the secondary somatosensory (SII) cortex, the parietal ventral (PV) and parietal rhinal (PR) areas, and the posteromedial (PM) region. Examination of the thalamus revealed labeled neurons in the intralaminar nuclei, in the medial part of the posterior nucleus (POm), and in the ventrobasal complex. These results indicate that the dorsolateral neostriatum integrates sensorimotor information from multiple sensorimotor representations in the thalamus and cortex.