Decay accelerating factor (DAF) is a cell-surface phosphatidylinositol-anchored protein that protects the cell from inadvertent complement attack by binding to and inactivating C3 and C5 convertases. We have measured DAF on human umbilical vein endothelial cells (HUVEC) by immunoradiometric assay after its removal by phosphatidylinositol-specific phospholipase C or Nonidet P-40 detergent extraction and have previously demonstrated that DAF synthesis can be stimulated by phorbol ester activation of protein kinase C. We now report that although stimulation (4-48 h) of HUVEC with various cytokines, including TNF, IL-1, and IFN-gamma, did not alter DAF levels, wheat germ agglutinin (WGA) (5-50 micrograms/ml), a lectin specific for binding N-acetyl neuraminic acid and N-acetyl glucosamine residues, increased DAF levels fivefold when incubated with HUVEC for 12 to 24 h. The lectins Con A and PHA also stimulated DAF expression twofold, whereas a number of others including Ulex europaeus, Bandeiraea simplicifolia lectin I, and Ricinus communis agglutinin I, which bind to endothelial cells, were inactive. The increase in DAF by WGA was inhibited by N-acetyl glucosamine (10-50 mM) but by neither N-acetyl neuraminic acid nor removal of surface N-acetyl neuraminic acid with neuraminidase. However, succinylated WGA, which has unaltered affinity for N-acetyl glucosamine but not longer binds N-acetyl neuraminic acid, was inactive. These data suggest that the binding of WGA to sugar residues alone is not sufficient to trigger DAF expression and that occupation of additional, specific sites are required. The increase in DAF levels on HUVEC was blocked by inhibitors of RNA and protein synthesis. We conclude that continuous occupation by WGA of specific binding sites on HUVEC triggers events leading to DAF synthesis. This unique, long term stimulation of endothelial cells by lectins may be relevant to cell:cell interactions at the endothelium.