Short- and long-term synaptic depression in rat neostriatum

Abstract
1. We have examined plasticity at glutamatergic synapses on neurons in slices of neostriatum, a forebrain area involved in movement and cognitive function. 2. High-frequency stimulation of afferent inputs to neostriatal neurons induced depression of glutamatergic synaptic transmission. Depression could be induced using either prolonged trains or short repetitive bursts of high-frequency stimulation. Depression developed within seconds after such stimulation. Responses recovered to baseline levels within 10 min in most slices but persisted for up to 60 min in others. 3. Postsynaptic passive electrical properties and the ability to elicit action potentials by postsynaptic depolarization were not altered during depression. 4. The magnitude and time course of depression was similar whether postsynaptic responses were mediated by alpha amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) or N-methyl-D-aspartate (NMDA) type glutamate receptors. Depression was not altered by antagonism of AMPA or NMDA receptors or potentiation of AMPA receptor function with aniracetam. 5. Depression was blocked by treatments that increase transmitter release including increased extracellular Ca2+, application of 4-aminopyridine, or application of phorbol ester. 6. Our findings indicate that glutamatergic synapses in neostriatum are capable of expressing a form of synaptic depression that may involve decreased glutamate release.