The correlation functions of rbm and m/m/1
- 1 January 1988
- journal article
- research article
- Published by Taylor & Francis in Communications in Statistics. Stochastic Models
- Vol. 4 (2), 315-359
- https://doi.org/10.1080/15326348808807083
Abstract
This paper describes the (auto) correlation functions of regulated or reflecting Brownian motion (RBM) and several processes associated with the M/M/1 queue. For RBM and the M/M/1 continuous-time queue-length process, the correlation function of the stationary process coincides with the complementary stationary-excess cdf (cumulative distribution function) associated with a previously studied first-moment cdf. The first-moment cdf is the mean as a function of time given that the process starts at the origin, normalized by dividing by the steady-state limit. The M/M/1 first-moment cdf in turn is the stationary-excess cdf associated with the M/M/1 busy-period cdf. In fact, all the moment cdfs and correlation functions can be expressed directly in terms of the busy-period cdf. This structure provides the basis for simple approximations of the correlation functions and the moments as functions of time by hyperexponentials.Keywords
This publication has 24 references indexed in Scilit:
- Transient behavior of the M/M/l queue: Starting at the originQueueing Systems, 1987
- The virtual waiting-time and related processesAdvances in Applied Probability, 1986
- A diffusion approximation for correlation in queuesJournal of Applied Probability, 1980
- The covariance function of the virtual waiting-time process in an M/G/1 queueAdvances in Applied Probability, 1977
- The stable M/G/1 queue in heavy traffic and its covariance functionAdvances in Applied Probability, 1977
- The Correlation Coefficients of the Queue Lengths of Some Stationary Single Server QueuesJournal of the Australian Mathematical Society, 1971
- Functional limit theorems for the queue GI/G/1 in light trafficAdvances in Applied Probability, 1971
- Many server queueing processes with Poisson input and exponential service timesPacific Journal of Mathematics, 1958
- On Queues with Poisson ArrivalsThe Annals of Mathematical Statistics, 1957
- Investigation of waiting time problems by reduction to Markov processesActa Mathematica Hungarica, 1955