Abstract
This paper deals with initial-value problems for the Burgers equation with the inclusion of a hereditary integral known as the fractional derivative of order ½. Emphasis is placed on the difference between the local and global dissipation due to the second-order and the half-order derivatives, respectively. Exploiting the smallness of the coefficient of the second-order derivative, an asymptotic analysis is first developed. When a discontinuity appears, the matched-asymptotic expansion method is employed to derive a uniformly valid solution. If the coefficient of the half-order derivative is also small, as is usually the case, the evolution comprises three stages, namely a lossless near field, an intermediate Burgers region, and a hereditary far field. In view of these results, the equation is then solved numerically, under various initial conditions, by finite-difference and spectral methods. It is revealed that the effect of the fractional derivative accumulates slowly to give rise to a significant dissipation and distortion of the waveform globally, which is to be contrasted with the effect of the second-order derivative, significant only locally, in a thin 'shock layer’.

This publication has 11 references indexed in Scilit: