Abstract
The shape of Escherichia coli is strikingly simple compared to those of higher eukaryotes. In fact, the end result of E. coli morphogenesis is a cylindrical tube with hemispherical caps. It is argued that physical principles affect biological forms. In this view, genes code for products that contribute to the production of suitable structures for physical factors to act upon. After introduction of a physical model, the discussion is focused on the shape-maintaining (peptidoglycan) layer of E. coli. This is followed by a detailed analysis of the structural relationship of the cellular interior to the cytoplasmic membrane. A basic theme of this review is that the transcriptionally active nucleoid and the cytoplasmic translation machinery form a structural continuity with the growing cellular envelope. An attempt has been made to show how this dynamic relationship during the cell cycle affects cell polarity and how it leads to cell division.