The cell model for polyelectrolyte systems. Exact statistical mechanical relations, Monte Carlo simulations, and the Poisson–Boltzmann approximation
- 1 May 1982
- journal article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 76 (9), 4665-4670
- https://doi.org/10.1063/1.443547
Abstract
Some exact statistical mechanical relations have been derived for polyelectrolyte systems within the primitive model. Using the cell model, the osmotic pressure is determined through an explicit evaluation of the derivative of the partition function. Planar, cylindrical, and spherical systems are considered and for a planar charged wall the contact value theorem [Henderson and Blum, J. Chem. Phys. 69, 5441 (1978)] is obtained as a special case. Analogous relations are derived for the cylindrical and spherical geometries. It is argued that the exact relations can be used as consistency tests for analytical approximations. It is pointed out that one merit of the Poisson–Boltzmann approximation is that the validity of the exact equations is retained. Finally, a simple method is devised for determining the osmotic pressure from Monte Carlo simulations. Results from such simulations are used to assess the accuracy of the osmotic pressure calculated using the Poisson–Boltzmann equation. For monovalent ions, the pressure is overestimated by 10%–50% in the cases studied, while with divalent counterions the error is substantially larger and a discrepancy of one order of magnitude is found.Keywords
This publication has 23 references indexed in Scilit:
- Surfactant association into micelles. An electrostatic approachThe Journal of Physical Chemistry, 1980
- The grand canonical ensemble Monte Carlo method applied to the electrical double layerThe Journal of Chemical Physics, 1980
- Ion distributions in lamellar liquid crystals. A comparison between results from Monte Carlo simulations and solutions of the Poisson-Boltzmann equationThe Journal of Physical Chemistry, 1980
- Interaction between electrical double layersThe Journal of Physical Chemistry, 1980
- Theory of the electric double layer using a modified poisson–boltzman equationJournal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1980
- A Monte Carlo study of an electrical double layerChemical Physics Letters, 1979
- Application of the hypernetted chain approximation to the electric double layer at a charged planar interfaceChemical Physics Letters, 1979
- Micelles. Physical chemistry of surfactant associationPhysics Reports, 1979
- Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solutionJournal of Theoretical Biology, 1971
- Theory of liquid-crystal phase transitions in lipid + water systemsTransactions of the Faraday Society, 1966