Abstract
Prolyl oligopeptidase, a representative of a new family of serine proteases, is remarkably sensitive to ionic strength and has two catalytically active forms, which interconvert with changing pH [Polgár, L. (1991) Eur. J. Biochem. 197, 441-447]. To reveal whether conformational changes are associated with these effects, prolyl oligopeptidase was digested with trypsin. SDS gel electrophoresis studies demonstrated that tryptic digestion of the 75-kDa native protein generated two fragments, one having a molecular mass of 51 kDa and the other of 26 kDa. The digestion was markedly dependent on the ionic strength. Specifically, the digestion proceeded more rapidly in 0.05 M Hepes buffer than in 0.05 M Hepes buffer containing 0.5 M NaCl. Moreover, the nicked enzyme formed at low ionic strength was not stable but degraded and inactivated during an extended incubation. The digestion experiments suggested that alteration in the ionic strength elicits conformational changes in native prolyl oligopeptidase, and this may account for the enhanced catalytic activity observed at higher ionic strength. The two fragments of the nicked prolyl oligopeptidase did not separate during size-exclusion chromatography under nondenaturing conditions on a Superose 12 column and eluted in place of the native enzyme, indicating that they were strongly associated. The reactive serine residues of the nicked enzyme was labeled with tritiated diisopropyl phosphofluoridate, and the fragments were separated by size-exclusion chromatography in urea.(ABSTRACT TRUNCATED AT 250 WORDS)