Magnetic field-line reconnection with jets

Abstract
Some recent numerical simulations of driven magnetic field-line reconnection by Biskamp show no evidence of the Petschek mechanism when the reconnection rate or magnetic Reynolds number are large. Instead, an electric current sheet forms on the symmetry axis, across which a magnetic field is annihilated. The sheet terminates at a Y-point. Fluid driven into the current sheet escapes as jets along the separatrices emanating from the Y-point. This paper shows how many of the features such as the jets can be explained by a simple analytical model. Since the numerical simulations are necessarily on a bounded domain, the importance of the external boundary conditions in setting up a steady-state solution is stressed by illustrative examples.

This publication has 9 references indexed in Scilit: