Abstract
The rate of the depolymerization of beef liver glutamate dehydrogenase induced by coenzyme and the purine nucleotides guanosine 5'-diphosphate and guanosine 5'-triphosphate, which are potent inhibitors of enzymatic activity, has been measured by rapid light scattering techniques and by absorbancy changes with stop flow. It is shown that the rate constant for this process may vary from several milliseconds to several seconds depending upon the nucleotides used. The widely varying rate constants for the nucleotide-induced depolymerization may serve a role in determining the nature of the regulation of enzyme activity by nucleotides. Depolymerization induced by guanosine 5'-diphosphate in the presence of diphosphopyridine nucleotide is slower than in the presence of triphosphopyridine nucleotide as coenzyme, and this difference is apparently due to the isomerization of the enzyme as a result of diphosphopyridine nucleotide binding to a second, nonactive site. This binding, as well as binding of the coenzyme to the active site, may be conveniently measured by a purine nucleotide-induced spectral shift in the coenzyme absorption spectrum. It is also shown that complete depolymerization of the enzyme in the presence of guanosine 5'-triphosphate is accomplished by about half saturation of the coenzyme active sites (6-8 active "monomer").