Development and characterization of novel erythropoiesis stimulating protein (NESP)
Top Cited Papers
Open Access
- 16 June 2001
- journal article
- research article
- Published by Springer Nature in British Journal of Cancer
- Vol. 84 (s1), 3-10
- https://doi.org/10.1054/bjoc.2001.1746
Abstract
Studies on human erythropoietin (EPO) demonstrated that there is a direct relationship between the sialic acid-containing carbohydrate content of the molecule and its serum half-life and in vivo biological activity, but an inverse relationship with its receptor-binding affinity. These observations led to the hypothesis that increasing the carbohydrate content, beyond that found naturally, would lead to a molecule with enhanced biological activity. Hyperglycosylated recombinant human EPO (rHuEPO) analogues were developed to test this hypothesis. Darbepoetin alfa (novel erythropoiesis stimulating protein, NESP, ARANESPTM, Amgen Inc, Thousand Oaks, CA), which was engineered to contain 5 N-linked carbohydrate chains (two more than rHuEPO), has been evaluated in preclinical animal studies. Due to its increased sialic acid-containing carbohydrate content, NESP is biochemically distinct from rHuEPO, having an increased molecular weight and greater negative charge. Compared with rHuEPO, it has an approximate 3-fold longer serum half-life, greater in vivo potency, and can be administered less frequently to obtain the same biological response. NESP is currently being evaluated in human clinical trials for treatment of anaemia and reduction in its incidence. © 2001 Cancer Research CampaignKeywords
This publication has 37 references indexed in Scilit:
- Pharmacokinetics of Novel Erythropoiesis Stimulating Protein Compared with Epoetin Alfa in Dialysis PatientsJournal of the American Society of Nephrology, 1999
- Epoetin AlfaDrugs, 1995
- Role of glycosylation on the secretion and biological activity of erythropoietinBiochemistry, 1992
- Role of sugar chains in the expression of the biological activity of human erythropoietin.Journal of Biological Chemistry, 1992
- Glycosylation of recombinant protein therapeutics: control and functional implicationsGlycobiology, 1991
- Structural characterization of human erythropoietin.Journal of Biological Chemistry, 1986
- The Role of Carbohydrate in Erythropoietin Action*Endocrinology, 1985
- A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody.Proceedings of the National Academy of Sciences, 1984
- Purification of human erythropoietin.Journal of Biological Chemistry, 1977
- On the mechanism of erythropoietin-induced differentiation. 13. The role of sialic acid in erythropoietin action.1974