Flow behaviour of blood cells and rigid spheres in an annular vortex
- 10 June 1977
- journal article
- research article
- Published by The Royal Society in Philosophical Transactions of the Royal Society of London. B, Biological Sciences
- Vol. 279 (967), 413-445
- https://doi.org/10.1098/rstb.1977.0095
Abstract
The behaviour of human and frog red cells, platelets and rigid spheres were studied in the annular vortex formed in steady or pulsatile flow at the sudden concentric expansion of a 151 $\mu$ m into 504 $\mu$ m diameter glass tube. During a single orbit the measured particle velocities and paths in steady flow were in good agreement with those calculated for the fluid, predicted by theory to circulate in closed orbits. Over longer periods, however, single blood cells and latex spheres < 20 $\mu$ m diameter migrated across the streamlines out of the vortex at a rate depending on the Reynolds number whereas spheres and aggregates of red cells > 30 $\mu$ m diameter remained in the vortex at all Reynolds numbers. Similar behaviour was noted in pulsatile flow when the vortex moved in phase with upstream fluid velocity and particles described spiral orbits of continually changing diameter. With red cell suspensions of 15-45% haematocrit in steady flow, migration of the corpuscles was also observed and resulted in the formation of a particle-free vortex. In pulsatile flow, cells were always present in the vortex, but their concentration which varied periodically was lower than that in the mainstream. The formation of aggregates of latex spheres and human platelets through collisions occurring in orbit, and their migration to the vortex centre was also observed.
Keywords
This publication has 36 references indexed in Scilit:
- The lateral migration of solid particles in a laminar flow near a planeInternational Journal of Multiphase Flow, 1977
- Flow in an abrupt expansion as a model for biological mass transfer experimentsJournal of Biomechanics, 1975
- Theoretical investigation of mass transport to arterial walls in various blood flow regions— II. oxygen transport and its relationship to lipoprotein accumulationMathematical Biosciences, 1975
- Theoretical investigation of mass transport to arterial walls in various blood flow regions— I. flow field and lipoprotein transportMathematical Biosciences, 1975
- Low Reynolds number flow over a plane symmetric sudden expansionJournal of Fluid Mechanics, 1974
- Transport of 14 C-4-Cholesterol between Serum and Wall in the Perfused Dog Common Carotid ArteryCirculation Research, 1973
- Atheroma and arterial wall shear - Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesisProceedings of the Royal Society of London. B. Biological Sciences, 1971
- The lateral migration of solid particles in Poiseuille flow — I theoryChemical Engineering Science, 1968
- Hydrodynamic Resistance of Particles at Small Reynolds NumbersPublished by Elsevier ,1966
- THE SUSPENSION STABILITY OF THE BLOODPhysiological Reviews, 1929