The Attachment of Serum‐and Plasma‐Derived C3 to Solid‐Phase Immune Aggregates and its Relation to Complement‐Mediated Solubilization of Immune Complexes
- 1 April 1986
- journal article
- research article
- Published by Wiley in Scandinavian Journal of Immunology
- Vol. 23 (4), 397-406
- https://doi.org/10.1111/j.1365-3083.1986.tb03071.x
Abstract
The interaction between immune aggregates and complement (C) was investigated. Solid-phase immune aggregates were prepared by coating microwells with heat-aggregated bovine serum albumin (BSA) followed by rabbit anti-BSA antibody. The immune aggregates were reacted with human serum or citrated plasma at 37.degree. C. The binding of C3 components was investigated with biotinylated F(ab'')2 antibodies to C3c and C3d and avidin-coupled alkaline phosphatase. The form of the incorporated C3, whether C3b-iC3b or C3dg, can be deduced from the response with these two antibodies. The maximal binding of C3b-iC3b to the immune aggregates was observed within 5 min of incubation with serum or citrated plasma. The conversion to C3dg was evident by a decrease in bound anti-C3c concomitant with increasing anti-C3d reactivity within about 10 min of incubation. When the classical C pathway activation was inhibited, the binding of C3b-iC3b was delayed by 20-30 min, whereas stopping of the alternative pathway did not influence the initial kinetics of the reaction. The addition of human red blood cells had no measureable influence on the degradation of bound C3b-iC3b. 125I-labelled anti-BSA antibody bound to the solid-phase BSA was not released during the C3 incorporation. The incorporation of C3b into the immune aggregates was mediated equally well by serum and by citrated plasma. The incorporation of C3b-iC3b into immune complexes (IC) is thought to be responsible for the C-mediated solubilization (CMS) of IC. Citrated plasma, however, exerted no CMS capacity when measured by a radiometric assay. The CMS capactity of serum was inhibited by citrate, but could then be restored by adding Ca2+ and Mg2+, whereas no CMS could be demonstrated with citrated plasma to which divalent metal ions were added.This publication has 23 references indexed in Scilit:
- The Role of Negative Charge in the Complement-Dependent Dissoeiation of IgG-Mediated AggregationScandinavian Journal of Immunology, 1985
- Semi-automatic analysis of proteins and protein complexes by automated enzyme immuno assay after separation by high-performance gel-permeation chromatography : Size distribution of C3—IgG complexesJournal of Chromatography A, 1984
- A standardized method for quantitating the complement-mediated immune complex solubilizing capacity of human serumJournal of Immunological Methods, 1983
- Quantification of human immunoglobulins by semiautomatic polyethylene glycol precipitation radioimmunoassays. Estimation of circulating immune complexes and immunoglobulin synthesized in vitroJournal of Immunological Methods, 1983
- Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes.The Journal of Experimental Medicine, 1982
- Requirements for the solubilization of immune aggregates by complement. The role of the classical pathway.Journal of Clinical Investigation, 1978
- Immune response to phosphorylcholine—V: Dissociation of idiotypic complexes by complementImmunochemistry, 1978
- Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycolurilBiochemical and Biophysical Research Communications, 1978
- Requirements for the solubilization of immune aggregates by complement: assembly of a factor B-dependent C3-convertase on the immune complexes.The Journal of Experimental Medicine, 1977
- Studies on the mechanism of solubilization of immune precipitates by serum.The Journal of Experimental Medicine, 1976