Abstract
Long-term macrobenthic sampling at a site in northern San Francisco Bay has provided an unusual opportunity for documenting the time course of an invasion by a recently introduced Asian clam Potamocorbula amurensis. Between 1977, when sampling began, and 1986, when the new clam was first discovered, the benthic community varied predictably in response to river inflow. During years of normal or high river inflow, the community consisted of a few brackish or freshwater species. During prolonged periods of low river inflow, the number of species doubled as estuarine species (e.g. Mya arenaria) migrated up the estuary. In June 1987, at the beginning of the longest dry period in recent decades, large numbers (> 12000 m-2) of juvenile P. amurensis were discovered at the site. By mid-summer 1988 the new clam predominated (> 95%) in both total number of individuals and biomass, and the expected dry-period estuarine species did not become re-established. The rapid rise of P. amurensis to numerical dominance throughout the region of the original introduction was probably facilitated by the fact that this region of the bay had been rendered nearly depauperate by a major flood in early 1986. Once introduced, the clam had sufficient time (> 1 yr) to become well established before the salinity regime was appropriate for the return of the estuarine species. Subsequently, the new clam was apparently able to prevent the return of the dry-period community. Its ability to live in low salinity water (< 1.permill.) suggests that P. amurensis may not be displaced with the return of normal winter river flow and, therefore, may have permanently changed benthic community dynamics in this region of San Francisco Bay.