Abstract
Maximum-likelihood soft-decision decoding of linear block codes is addressed. A binary multiple-check generalization of the Wagner rule is presented, and two methods for its implementation, one of which resembles the suboptimal Forney-Chase algorithms, are described. Besides efficient soft decoding of small codes, the generalized rule enables utilization of subspaces of a wide variety, thereby yielding maximum-likelihood decoders with substantially reduced computational complexity for some larger binary codes. More sophisticated choice and exploitation of the structure of both a subspace and the coset representatives are demonstrated for the (24, 12) Golay code, yielding a computational gain factor of about 2 with respect to previous methods. A ternary single-check version of the Wagner rule is applied for efficient soft decoding of the (12, 6) ternary Golay code

This publication has 15 references indexed in Scilit: