Abstract
Molecular marker data collected from natural populations allows information on genetic relationships to be established without referencing an exact pedigree. Numerous methods have been developed to exploit the marker data. These fall into two main categories: method of moment estimators and likelihood estimators. Method of moment estimators are essentially unbiased, but utilise weighting schemes that are only optimal if the analysed pair is unrelated. Thus, they differ in their efficiency at estimating parameters for different relationship categories. Likelihood estimators show smaller mean squared errors but are much more biased. Both types of estimator have been used in variance component analysis to estimate heritability. All marker-based heritability estimators require that adequate levels of the true relationship be present in the population of interest and that adequate amounts of informative marker data are available. I review the different approaches to relationship estimation, with particular attention to optimizing the use of this relationship information in subsequent variance component estimation.