Optically Multiplexed Interferometric Fiber Optic Sensor System

Abstract
A sensor system where a number of Fabry-Perot interferometer sensors are placed in series on a single-mode fiber is discussed. Each Fabry-Perot sensor is resonant within a unique bandpass of optical wavelengths and transmits with small attenuation at all other wavelengths. Fiber Fabry-Perot interferometers with narrow-band resonances are formed by placing a matched pair of bandpass reflectors on the fiber. The sensor system has three major subsystems: a swept frequency laser, frequency selective Fabry-Perot sensors, and demodulation hardware. A grating formed by holographic process is placed in the evanescent field to produce a frequency selective reflector. Individual sensors are polled by a frequency swept laser. As the laser wavelength is scanned over the resonance bandpass of the first sensor, Fabry-Perot fringes from the first sensor are read out. As the laser continues to sweep its optical frequency, the first sensor's gratings no longer act as reflectors; the sensor becomes transparent to the optical probe. After a sufficient optical wavelength guard band, the resonance band of the second sensor is reached and fringes from the second sensor are read out. Fabry-Perot phase and fringe order information are recovered by a combination of optical and electronic signal processing. The optical processor is a second Fabry-Perot interferometer which is used as an analyzer to aid recovery of the phase information.