Individual versus social complexity, with particular reference to ant colonies
- 1 May 2001
- journal article
- review article
- Published by Wiley in Biological Reviews
- Vol. 76 (2), 211-237
- https://doi.org/10.1017/s1464793101005656
Abstract
Insect societies – colonies of ants, bees, wasps and termites – vary enormously in their social complexity. Social complexity is a broadly used term that encompasses many individual and colony‐level traits and characteristics such as colony size, polymorphism and foraging strategy. A number of earlier studies have considered the relationships among various correlates of social complexity in insect societies; in this review, we build upon those studies by proposing additional correlates and show how all correlates can be integrated in a common explanatory framework. The various correlates are divided among four broad categories (sections). Under ‘polyphenism’ we consider the differences among individuals, in particular focusing upon ‘caste’ and specialization of individuals. This is followed by a section on ‘totipotency’ in which we consider the autonomy and subjugation of individuals. Under this heading we consider various aspects such as intracolony conflict, worker reproductive potential and physiological or morphological restrictions which limit individuals’ capacities to perform a range of tasks or functions. A section entitled ‘organization of work’ considers a variety of aspects, e.g. the ability to tackle group, team or partitioned tasks, foraging strategies and colony reliability and efficiency. A final section,‘communication and functional integration’, considers how individual activity is coordinated to produce an integrated and adaptive colony. Within each section we use illustrative examples drawn from the social insect literature (mostly from ants, for which there is the best data) to illustrate concepts or trends and make a number of predictions concerning how a particular trait is expected to correlate with other aspects of social complexity. Within each section we also expand the scope of the arguments to consider these relationships in a much broader sense of'sociality’ by drawing parallels with other ‘social’ entities such as multicellular individuals, which can be understood as ‘societies’ of cells. The aim is to draw out any parallels and common causal relationships among the correlates. Two themes run through the study. The first is the role of colony size as an important factor affecting social complexity. The second is the complexity of individual workers in relation to the complexity of the colony. Consequently, this is an ideal opportunity to test a previously proposed hypothesis that ‘individuals of highly social ant species are less complex than individuals from simple ant species’ in light of numerous social correlates. Our findings support this hypothesis. In summary, we conclude that, in general, complex societies are characterized by large colony size, worker polymorphism, strong behavioural specialization and loss of totipotency in its workers, low individual complexity, decentralized colony control and high system redundancy, low individual competence, a high degree of worker cooperation when tackling tasks, group foraging strategies, high tempo, multi‐chambered tailor‐made nests, high functional integration, relatively greater use of cues and modulatory signals to coordinate individuals and heterogeneous patterns of worker‐worker interaction. Key words: Ants, insect societies, individual complexity, social complexity, polyphenism, totitpotency, work organization, functional integration, sociality.Keywords
This publication has 114 references indexed in Scilit:
- Expression of insulin pathway genes during the period of caste determination in the honey bee,Apis melliferaInsect Molecular Biology, 2006
- Non-size-based morphological castes in a social insectThe Science of Nature, 1995
- Conflict in single-queen hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial speciesJournal of Theoretical Biology, 1992
- Evolutionary trends in the reproductive biology of ponerine ants (Hymenoptera: Formicidae)Journal of Natural History, 1991
- The blind leading the blind in army ant raid patterns: Testing a model of self-organization (Hymenoptera: Formicidae)Journal of Insect Behavior, 1991
- Insect sociometry, a field in search of dataInsectes Sociaux, 1991
- Comparative Study of Brain Morphology in AntsBrain, Behavior and Evolution, 1989
- Probabilistic behaviour in ants: A strategy of errors?Journal of Theoretical Biology, 1983
- Reliability theory and foraging by antsJournal of Theoretical Biology, 1981
- Platzende Arbeiterinnen: Eine neue Art der Feindabwehr bei sozialen HautflüglernOecologia, 1974