Abstract
The abilities of several different capillary electrophoresis techniques to separate DNA restriction fragments up to 23,000 bp were investigated. Methods employing electroosmotic flow in an untreated silica capillary were found to provide, at best, only partial resolution of the 23 fragments in a 1-kbp DNA ladder. By coating the inner walls of a silica capillary with poly(acrylamide) and filling these capillaries with buffers containing methylcellulose as a sleving medium, all fragments in the 1-kbp DNA ladder were separated. In addition, this technique facilitated the separation of the very large fragments in a lambda DNA-HindIII digest. Optimum resolution was obtained at low separation potentials using buffers containing at least 0.5% methylcellulose. The performance of this technique, i.e., resolution and quantitation, make capillary electrophoresis a powerful complement to slab gel electrophoresis and may make it a preferred alternative to both agarose gel electrophoresis and HPLC for applications such as the confirmation of plasmid integrity.