Effects of extracellular matrix components on the growth and differentiation of cultured rat hepatocytes

Abstract
Some effects of culturing adult rat hepatocytes on each of four different substrates—laminin (LN), collagen type I (C-I), collagen type IV (C-IV), and fibronectin (FN)—have been investigated under defined conditions. No differential effect on the attachment of the cells to the various substrates was noted; however, the spreading of hepatocytes shortly after initial plating was most strikingly enhanced by FN, whereas LN exhibited little or no such enhancement. The two collagen substrates enhanced the spreading of hepatocytes more than did LN, but less than FN. The different substrates had no differential effect on the induction of tyrosine aminotransferase by dexamethasone and glucagon for at least the first 10 d in culture. The longevity of the hepatocytes was not changed significantly by any of the substrates, at least through the 14th d of culture. During the culture periods the hepatocytes at high cell density were maintained as confluent monolayers, regardless of the substrate on which they had been cultured. After 14 d of culture, γ-glutamyltranspeptidase activity was highest in cells cultured on C-IV, and lowest in those on FN. DNA synthesis in cultured hepatocytes at a low cell density was highest in cells cultured on FN, with decreasing levels of this parameter in cells cultured on C-IV, C-I, and LN, respectively. These results demonstrate that specific components of the extracellular matrix modulate both differentiated functions and the replication of hepatocytes cultured in serum-free medium.