Vitamin E effects on indexes of lipid peroxidation in muscle from DHEA-treated and exercised rats

Abstract
Sixty-four male Sprague-Dawley rats were randomly assigned to one of eight treatment groups to determine the effects of vitamin E (VitE), dehydroepiandrosterone (DHEA), and exercise on antioxidant status in plasma and skeletal muscle. Indexes of oxidative stress were determined by measuring two markers of lipid peroxidation and the activity of two free radical scavenging enzymes. One-half of the rats had their diets supplemented with 250 IU VitE/kg of diet. One-half of the rats were injected with 0.35 mol/kg body wt ip of DHEA-acetate, whereas the others were injected with vehicle. All treatments lasted 5 wk. Before being killed, one-half of each treatments group of rats was randomly assigned to run for 1 h on a motorized rodent treadmill at 21 m/min up a 12% grade. The other rats remained rested before being killed. Exercise increased thiobarbituric acid-reactive substances (TBARS) and lipid hydroperoxides in plasma and TBARS in red slow-twitch and white fast-twitch muscles. VitE reduced the amount of lipid hydroperoxides and TBARS in plasma and TBARS in all three muscle fiber types. VitE also reduced glutathione peroxidase (GPX) activity in plasma and red fast-twitch muscle. DHEA increased indexes of oxidative stress in plasma and white fast-twitch muscle. DHEA reduced GPX activity in plasma but increased GPX activity in all three muscle fiber types. These results indicate that aerobic exercise is a mild oxidative stressor with DHEA exacerbating this response and that VitE helps diminish this effect in certain muscle fiber types.