Tetrathienoacene Copolymers As High Mobility, Soluble Organic Semiconductors

Abstract
Increasing the rigidity of the thiophene monomer through the use of an alkyl-substituted core that consists of four fused thiophene rings is shown to be a promising route toward high-performance organic semiconductors. We report on a dialkylated tetrathienoacene copolymer that can be deposited from solution to yield ordered films with a short π−π distance of 3.76 Å and with a field-effect hole mobility that exceeds 0.3 cm2/V·s. This polymer enables simple transistor fabrication at relatively low temperatures, which is particularly important for the realization of large-area, mechanically flexible electronics.