Studies on the attachment of myristic and palmitic acid to cell proteins in human squamous carcinoma cell lines: evidence for two pathways.

Abstract
The ability of human keratinocytes and squamous carcinoma cell lines to attach lipid covalently to cell proteins has been examined using both palmitic and myristic acids. SDS‐polyacrylamide gel analyses of the proteins labelled with these lipids demonstrated that each labelled a different set of proteins. Covalently protein bound palmitic acid could be removed from the proteins by mild alkali hydrolysis but the bound myristic acid required prolonged acid hydrolysis to release it from the associated proteins. H.p.l.c. analyses of the released lipid confirmed that both lipids were attached to proteins directly and that the labelling was not due to the lipids being catabolised. Cycloheximide could prevent the attachment of myristic acid to cell proteins, but only reduced the levels of palmitic acid incorporation. Pulse chase experiments indicated that there was little turnover of the attached myristic acid whereas this was significant for covalently bound palmitic acid. These observations show for the first time that two different protein populations are labelled by different lipids in eukaryotic cells, and that there appear to be two separate pathways for the acylation of proteins in such cells.