Mechanism of resistance to vancomycin in Enterococcus faecium D366 and Enterococcus faecalis A256

Abstract
The role of the glycopeptide-inducible proteins of Enterococcus faecium D366 (39.5 kilodaltons) and Enterococcus faecalis A256 (39 kilodaltons) in the mechanism of resistance to vancomycin and teicoplanin was examined. Crude cell walls from noninduced cells or from induced cells treated with sodium dodecyl sulfate to remove the inducible proteins were shown to bind vancomycin, in contrast to cell walls containing the cytoplasmic membrane-associated induced proteins, which did not bind vancomycin. Cytoplasmic membranes from vancomycin-induced cells did not inactivate (bind) vancomycin or teicoplanin, but they could protect the glycopeptides from being bound to the synthetic pentapeptide. This protection could be competitively abolished by D-alanyl-D-alanine. A decrease in glycopeptide binding to the pentapeptide was observed in a time-dependent fashion after treatment of the pentapeptide with the cytoplasmic membranes from induced cells. We hypothesize that the inducible proteins are responsible for glycopeptide resistance due to the binding to, and subsequent enzymatic modification of, the pentapeptide precursor of peptidoglycan, which is considered to be the natural target of glycopeptides.