Gene transfer into hematopoietic progenitor and stem cells: Progress and problems

Abstract
Gene transfer to hematopoietic cells for the purpose of “gene therapy” is a new and rapidly developing field with clinical trials in progress. A fundamental goal of research in this field is the incorporation of exogenous genes into the chromosomes of the most primitive hematopoietic progenitor cells—stem cells. Recombinantly engineered retroviral vectors are the best characterized and are currently the only vector type in clinical trials directed at the hematopoietic system. High efficiency gene transfer and expression in murine stem cells and their progeny is now routine, but in larger animal models such as dogs or primates and preliminary clinical trials, gene transfer has been less successful. Problems such as retroviral efficiency, gene expression, insertional mutagenesis and helper virus contamination are being addressed. A promising new vector, the adeno‐associated virus (AAV), has shown promise and may allow production of high titer, stable, recombinant virions without helper contamination and with potentially better safety parameters. However, the technology for AAV gene transfer is currently underdeveloped, and issues related to the reproducible production of vectors must be addressed. Other non‐viral vector systems are being explored, but little data are available on applications to hematopoietic cells. Better preclinical models are needed to study gene targeting and expression in human cells. An overview of recombinant retroviral and adeno‐associated viral vector production, preclinical data and preliminary clinical data will be given, and problems needing to be addressed at all stages of development before broad clinical utility can be achieved will be discussed.

This publication has 98 references indexed in Scilit: