Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium.
- 1 September 1994
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 75 (3), 434-442
- https://doi.org/10.1161/01.res.75.3.434
Abstract
Expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase was shown to be reduced in failing human myocardium. The functional relevance of this finding, however, is not known. We investigated the relation between myocardial function and protein levels of SR Ca(2+)-ATPase in nonfailing human myocardium (8 muscle strips from 4 hearts) and in myocardium from end-stage failing hearts with dilated (10 muscle strips from 9 hearts) or ischemic (7 muscle strips from 5 hearts) cardiomyopathy. Myocardial function was evaluated by the force-frequency relation in isometrically contracting muscle strip preparations (37 degrees C, 30 to 180 min-1). In nonfailing myocardium, twitch tension rose with increasing rates of stimulation and was 76% higher at 120 min-1 compared with 30 min-1 (P < .02). In failing myocardium, there was no significant increase in average tension at stimulation rates above 30 min-1. At 120 min-1, twitch tension was decreased by 59% (P < .05) in dilated cardiomyopathy and 76% (P < .05) in ischemic cardiomyopathy compared with nonfailing myocardium. Protein levels of SR Ca(2+)-ATPase, normalized per total protein or per myosin, were reduced by 36% (P < .02) or 32% (P < .05), respectively, in failing compared with nonfailing myocardium. SR Ca(2+)-ATPase protein levels were closely related to SR Ca2+ uptake, measured in homogenates from the same hearts (r = .70, n = 16, and P < .005).(ABSTRACT TRUNCATED AT 250 WORDS)Keywords
This publication has 14 references indexed in Scilit:
- Probing functional regions in cardiac isomyosins with monoclonal antibodiesBiochemistry, 1993
- Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium.Journal of Clinical Investigation, 1990
- Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure.Journal of Clinical Investigation, 1990
- Depression of systolic and diastolic myocardial reserve during atrial pacing tachycardia in patients with dilated cardiomyopathy.Journal of Clinical Investigation, 1988
- Can Ca entry via Na-Ca exchange directly activate cardiac muscle contraction?Journal of Molecular and Cellular Cardiology, 1988
- A monoclonal antibody to the Ca2+ ‐ATPase of cardiac sarcoplasmic reticulum cross‐reacts with slow type I but not with fast type II canine skeletal muscle fibers: An immunocytochemical and immunochemical studyCell Motility, 1988
- The homeostasis of calcium in heart cellsJournal of Molecular and Cellular Cardiology, 1985
- The sequestration of Ca2+ by mitochondria in rat heart cellsCell Calcium, 1983
- The cardiac excitation-contraction cyclePharmacology & Therapeutics, 1982