Electromagnetic Scattering by an Ellipsoid in the Third Approximation
- 1 September 1953
- journal article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 24 (9), 1143-1151
- https://doi.org/10.1063/1.1721462
Abstract
The method previously described of solving electromagnetic scattering problems as power series in k is here applied to the ellipsoid, the first three terms in the series being obtained. The second term in the series for the wave zone field (that proportional to k3) vanishes, and the same is true of any body possessing a center of symmetry. Thus the terms in k2, k4 in the wave zone field are here obtained. The direction and polarization of the incident wave, and the electromagnetic constants of the ellipsoid, are arbitrary. The final results are expressed in terms of certain elliptic integrals which are functions of the three principal axes of the ellipsoid. These integrals can all be expressed simply in terms of just two such integrals; they become elementary integrals in the case of a spheroid. Various special cases are considered, including that of a perfectly conducting elliptical disk and the complementary problem of diffraction through an elliptical hole in a perfectly conducting screen.Keywords
This publication has 3 references indexed in Scilit:
- On the Diffraction of an Electromagnetic Wave through a Plane ScreenJournal of Applied Physics, 1949
- Strenge Theorie der Beugung elektromagnetischer Wellen an der vollkommen leitenden KreisscheibeZeitschrift für Naturforschung A, 1948
- V. On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture in a conducting screenJournal of Computers in Education, 1897