An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria
Top Cited Papers
- 20 November 2005
- journal article
- letter
- Published by Springer Nature in Nature
- Vol. 440 (7080), 110-114
- https://doi.org/10.1038/nature04382
Abstract
Magnetotactic bacteria are widespread aquatic microorganisms that use unique intracellular organelles to navigate along the Earth's magnetic field. These organelles, called magnetosomes, consist of membrane-enclosed magnetite crystals that are thought to help to direct bacterial swimming towards growth-favouring microoxic zones at the bottom of natural waters1. Questions in the study of magnetosome formation include understanding the factors governing the size and redox-controlled synthesis of the nano-sized magnetosomes and their assembly into a regular chain in order to achieve the maximum possible magnetic moment, against the physical tendency of magnetosome agglomeration. A deeper understanding of these mechanisms is expected from studying the genes present in the identified chromosomal ‘magnetosome island’, for which the connection with magnetosome synthesis has become evident2. Here we use gene deletion in Magnetospirillum gryphiswaldense to show that magnetosome alignment is coupled to the presence of the mamJ gene product. MamJ is an acidic protein associated with a novel filamentous structure, as revealed by fluorescence microscopy and cryo-electron tomography. We suggest a mechanism in which MamJ interacts with the magnetosome surface as well as with a cytoskeleton-like structure. According to our hypothesis, magnetosome architecture represents one of the highest structural levels achieved in prokaryotic cells.Keywords
This publication has 21 references indexed in Scilit:
- A Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary GrowthJournal of Bacteriology, 2005
- Cryo-Electron Tomography Reveals the Cytoskeletal Structure of Spiroplasma melliferumScience, 2005
- Magnetoreception and its trigeminal mediation in the homing pigeonNature, 2004
- Inactivation of the Flagellin Gene flaA in Magnetospirillum gryphiswaldense Results in Nonmagnetotactic Mutants Lacking Flagellar FilamentsApplied and Environmental Microbiology, 2004
- Magnetosome formation in prokaryotesNature Reviews Microbiology, 2004
- ‘Apples’ and ‘oranges’: comparing the structural aspects of biomineral- and ice-interaction proteinsCurrent Opinion in Colloid & Interface Science, 2003
- Dynamic proteins and a cytoskeleton in bacteriaNature Cell Biology, 2003
- A simple light scattering method to assay magnetism inMagnetospirillum gryphiswaldenseFEMS Microbiology Letters, 1995
- Electron microscopic studies of magnetosomes in magnetotactic bacteriaMicroscopy Research and Technique, 1994
- Paleomagnetic evidence for fossil biogenic magnetite in western CreteEarth and Planetary Science Letters, 1982