A digital state feedback control algorithm has been developed to obtain the near-minimum-time trajectory for the end-effector of a robot manipulator. In this algorithm, the poles of the linearized closed loop system are judiciously placed in the Z-plane to permit near-minimum-time response without violating the constraints on the actuator torques. The validity of this algorithm has been established using numerical simulations. A three-link manipulator is chosen for this purpose and the results are discussed for three different combinations of initial and final states.