An Information-Theoretic Entropy Metric for Assessing Multi-Objective Optimization Solution Set Quality

Abstract
An entropy-based metric is presented that can be used for assessing the quality of a solution set as obtained from multi-objective optimization techniques. This metric quantifies the “goodness” of a set of solutions in terms of distribution quality over the Pareto frontier. The metric can be used to compare the performance of different multi-objective optimization techniques. In particular, the metric can be used in analysis of multi-objective evolutionary algorithms, wherein the capabilities of such techniques to produce and maintain diversity among different solution points are desired to be compared on a quantitative basis. An engineering test example, the multi-objective design optimization of a speed-reducer, is provided to demonstrate an application of the proposed entropy metric.