Subcellular distribution and isolation of the Ca2+ antagonist receptor associated with the voltage regulated Ca2+ channel from rabbit heart muscle
- 1 August 1987
- journal article
- research article
- Published by Springer Nature in Molecular and Cellular Biochemistry
- Vol. 76 (2), 173-184
- https://doi.org/10.1007/bf00223482
Abstract
The Ca2+ antagonist binding sites associated with the voltage dependent calcium channel in rabbit myocardium were found to distribute with the sarcolemmal Na− + K+ ATPase and adenylate cyclase activities during subcellular fractionation on sucrose-density gradients. The equilibrium dissociation constants (KD) for the binding of [3H]nitrendipine and [3H]verapamil were 0.31 ± 0.04 nM and 4.1 ± 0.5 nM respectively, and displayed an average density of 0.55 ± 0.05 pmol/mg and 0.4 ± 0.03 pmol/mg protein respectively for the most enriched membrane fraction. The Ca2+2 antagonist binding sites were solubilized from the membranes with the detergent 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate, and specific binding sites for [3H]PN200-110, [3H]verapamil and [3H]diltiazem were isolated on a wheat-germ lectin column. The binding sites for [3H]PN200-110 were enriched about 2500 fold as compared with the original homogenate and displayed a density of 28.5 ± 8 pmole/mg protein in the isolated fraction. Sodium dodecyl sulfate gel electrophoresis of the isolated drug binding proteins indicated enrichment of proteins of Mr 170000, 140000, 130000, 100 000 and 53000. The isolated receptor contained an intrinsic kinase activity that phosphorylated glycoproteins of Mr 170 000 and 53000. Exogenously added cAMP-kinase stimulated phosphorylation of the 170000, 100000, 53 000 and 28000 Mr glycoproteins in the receptor fraction. The results of this study indicate that the binding sites for [3H]nitrendipine, [3H]PN200-110, [3H]verapamil and [3H]diltiazem residue on glycoprotein(s) which are of sarcolemmal origin, and co-purify together on wheat germ lectin columns. The polypeptide composition of the Ca2+ antagonist binding sites from cardiac muscle appears to be very similar to that of the dihydropyridine receptor in skeletal muscle.This publication has 36 references indexed in Scilit:
- Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubulesBiochemistry, 1986
- Immunochemical analysis of subunit structures of 1,4-dihydropyridine receptors associated with voltage-dependent calcium channels in skeletal, cardiac, and smooth musclesBiochemistry, 1986
- Purified calcium channels have three allosterically coupled drug receptorsFEBS Letters, 1986
- Solubilization of the bovine cardiac sarcolemmal binding sites for calcium channel blockersEuropean Journal of Biochemistry, 1986
- Modulation of calcium channel function by drugsLife Sciences, 1985
- Purification of the cardiac 1,4-dihydropyridine receptor/calcium channel complexBiochemical and Biophysical Research Communications, 1985
- Properties of receptors for the Ca2+‐channel blocker verapamil in transverse‐tubule membranes of skeletal muscleEuropean Journal of Biochemistry, 1984
- Binding of the calcium channel blocker nitrendipine to its receptor in purified sarcolemma from canine cardiac ventricleJournal of Molecular and Cellular Cardiology, 1983
- Regulation of canine heart sarcolemmal Ca2+-pumping ATPase by cyclic GMPBiochimica et Biophysica Acta (BBA) - Biomembranes, 1983
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970