Modulation of oat mitochondrial ATPase activity by CA2+ and phytochrome.

Abstract
The activity of a Mg2+-dependent ATPase present in highly purified preparations of Avena mitochondria was photoreversibly modulated by red/far-red light treatments. These results were obtained either with mitochondria isolated from plants irradiated with white light prior to the extraction or with mitochondria isolated from unirradiated plants only when purified phytochrome was exogenously added to the reacton mixture. Red light, which converts phytochrome to the far red-absorbing form (Pfr) depressed the ATPase activity, and far-red light reversed this effect. Addition of exogenous CaCl2 also depressed the ATPase activity, and the kinetics of inhibition were similar to the kinetics of the Pfr effects on the ATPase. The calcium chelator, ethyleneglycol-bis-(.beta.-amino-ethyl ether)-N,N''-tetraacetic acid, blocked the effects of both CaCl2 and Pfr on the ATPase. These results are consistent with the interpretation that Pfr promotes a release of Ca2+ from the mitochondrial matrix, thereby inducing an increase in the concentration of intermembranal and extra-mitochondrial Ca2+.