The M·AluI DNA-(cytosineC5)-methyltransferase has an unusually large, partially dispensable, variable region

Abstract
The DNA methyltransferase of the AluI restriction-modification system, from Arthrobacter luteus, converts cytosine to 5-methylcytosine in the sequence AGCT. The gene for this methyltransferase, aluIM, was cloned into Escherichia coli and sequenced. A 525-codon open reading frame was found, consistent with deletion evidence, and the deduced amino acid sequence revealed all ten conserved regions common to 5-methylcytosine methyltransferases. The aluIM sequence predicts a protein of M(r) 59.0k, in agreement with the observed M(r), making M.AluI the largest known methyltransferase from a type II restriction-modification system. M.AluI also contains the largest known variable region of any monospecific DNA methyltransferase, larger than that of most multispecific methyltransferases. In other DNA methyltransferases the variable region has been implicated as the sequence-specific target recognition domain. An in-frame deletion that removes a third of this putative target-recognition region leaves the Alu I methyltransferase still fully active.