Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses
- 1 October 1992
- journal article
- Published by Hindawi Limited in Genetics Research
- Vol. 60 (2), 139-151
- https://doi.org/10.1017/s0016672300030822
Abstract
Maximum likelihood methods for the mapping of quantitative trait loci (QTL) have been investigated in an F2population using simulated data. The use of adjacent (flanking) marker pairs gave improved power for the detection of QTL over the use of single markers when markers were widely spaced and the QTL effect large. The use of flanking marker loci also always gave moreaccurate and less biassed estimates for the effect and position of the QTL and made the method less sensitive to violations of assumptions, for example non-normality of the distribution. Testing the hypothesis of a linked QTL against that of no QTL is not biassed by the presence of unlinked QTL. This test is more robust and easier to obtain than the comparison of a linked with an unlinked QTL. Fixing the recombination fraction between the markers at an incorrect value in the analyses with flanking markers does not generally bias the test for QTL or estimates of their effect. The presence of multiple linked QTL bias both tests and estimates of effect with interval mapping, leading to inflated values when QTL are in association in the lines crossed and deflated values when they are in dispersion.Keywords
This publication has 7 references indexed in Scilit:
- A simple regression method for mapping quantitative trait loci in line crosses using flanking markersHeredity, 1992
- Methods of segregation analysis for animal breeding data: a comparison of powerHeredity, 1992
- Using molecular markers to map multiple quantitative trait loci: models for backcross, recombinant inbred, and doubled haploid progenyTheoretical and Applied Genetics, 1991
- Mapping quantitative trait loci using molecular marker linkage mapsTheoretical and Applied Genetics, 1990
- On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred linesTheoretical and Applied Genetics, 1976
- The Large-Sample Distribution of the Likelihood Ratio for Testing Composite HypothesesThe Annals of Mathematical Statistics, 1938
- The probable errors of calculated linkage values, and the most accurate method of determining gametic from certain zygotic seriesJournal of Genetics, 1919