Effect of adenosine deaminase inhibition upon human lymphocyte blastogenesis.

Abstract
The biochemical mechanisms by which a genetically determined deficiency of adenosine deaminase leads to immunodeficiency are still poorly understood and prompted this study. We have examined the effects of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA) upon the response of human peripheral blood mononuclear cells to the mitogen concanavalin A (Con A). Cells isolated from normal volunteers were incubated in microtiter plates in the presence of various inhibitors, and the incorporation of tritrated thymidine or leucine into macromolecular material was measured after 64 h. EHNA at a concentration of 0.3 muM, which inhibited 90% of the adenosine deaminase (ADA) activity in a mononuclear preparation, impaired the incorporation of tritrated leucine into protein; 100 muM EHNA was the minimal concentration that inhibited thymidine uptake. The addition of 15 muM adenosine or 10 muM cyclic AMP to Con A-stimulated lymphocytes inhibited leucine uptake, while millimolar concentrations were required to inhibit thymidine uptake. Lower doses of adenosine and cyclic AMP stimulated thymidine incorporation. The inhibition of thymidine uptake observed with millimolar concentrations of adenosine was independent of the type of mitogen (pokeweed or Con A), the concentration of mitogen, or the medium used, but could be increased if the cells were cultured in a serum with reduced levels of adenosine deaminase. Washout experiments failed to demonstrate a critical period early in immune induction during which adenosine exerted its inhibitory effects. Noninhibitory doses of EHNA potentiated the effects of adenosine and cyclic AMP on leucine and thymidine uptake. EHNA at a concentration of 50 muM also potentiated the inhibitory effects on thymidine uptake of dibutyryl cyclic AMP, butyric acid, norepinephrine, and isoproterenol, but not theophylline. When mitogenesis was assayed by leucine incorporations, no synergy between EHNA and these compounds was apparent. Uridine relieved to some extent the inhibition of blastogenesis produced by adenosine and cyclic AMP, but not by dibutyryl cyclic AMP, norepinephreine, isoproterenol, or theophylline. Neither uridine alone nor uridine plus adenosine protected lymphocytes from the inhibitory effects of EHNA.