Preparation and characterization of chitosan/galactosylated hyaluronic acid scaffolds for primary hepatocytes culture

Abstract
Hepatocyte-specific three-dimensional tissue-engineeringed scaffold plays an important role for developing bioartificial liver devices. In the present study, galactose moieties were covalently coupled with hyaluronic acid through ethylenediamine. Highly porous sponge composed of chitosan (CS) and galactosylated hyaluronic acid (GHA) was prepared by freezing-drying technique. The morphology of the scaffolds was observed via scanning electron microscopy. Porosity and pore size of the sponge were greatly dependent on the content of GHA and freezing temperature. The addition of GHA not only improved the wettability and changed their mechanical properties, but also significantly influenced the cell attachment ratio. Moreover, liver functions of the hepatocytes such as albumin secretion, urea synthesis and ammonia elimination in the CS/GHA scaffolds were improved in comparison with those in the chitosan scaffolds.