Constitutive neuronal expression of CCR2 chemokine receptor and its colocalization with neurotransmitters in normal rat brain: Functional effect of MCP‐1/CCL2 on calcium mobilization in primary cultured neurons
- 29 September 2005
- journal article
- research article
- Published by Wiley in Journal of Comparative Neurology
- Vol. 492 (2), 178-192
- https://doi.org/10.1002/cne.20729
Abstract
Chemokines and their receptors are well described in the immune system, where they promote cell migration and activation. In the central nervous system, chemokine has been implicated in neuroinflammatory processes. However, an increasing number of evidence suggests that they have regulatory functions in the normal nervous system, where they could participate in cell communication. In this work, using a semiquantitative immunohistochemistry approach, we provide the first neuroanatomical mapping of constitutive neuronal CCR2 localization. Neuronal expression of CCR2 was observed in the anterior olfactory nucleus, cerebral cortex, hippocampal formation, caudate putamen, globus pallidus, supraoptic and paraventricular hypothalamic nuclei, amygdala, substantia nigra, ventral tegmental area, and in the brainstem and cerebellum. These data are largely in accordance with results obtained using quantitative autoradiography with [125I]MCP‐1/CCL2 and RT‐PCR CCR2 mRNA analysis. Furthermore, using dual fluorescent immunohistochemistry we studied the chemical phenotype of labeled neurons and demonstrated the coexistence of CCR2 with classical neurotransmitters. Indeed, localization of CCR2 immunostaining is observed in dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area as well as in cholinergic neurons in the substantia innominata and caudate putamen. Finally, we show that the preferential CCR2 ligand, MCP‐1/CCL2, elicits Ca2+ transients in primary cultured neurons from various rat brain regions including the cortex, hippocampus, hypothalamus, and mesencephalon. In conclusion, the constitutive neuronal CCR2 expression in selective brain structures suggests that this receptor could be involved in neuronal communication and possibly associated with cholinergic and dopaminergic neurotransmission and related disorders. J. Comp. Neurol. 492:178–192, 2005.Keywords
This publication has 24 references indexed in Scilit:
- Highly regionalized neuronal expression of monocyte chemoattractant protein‐1 (MCP‐1/CCL2) in rat brain: Evidence for its colocalization with neurotransmitters and neuropeptidesJournal of Comparative Neurology, 2005
- The Nature of the Arrestin·Receptor Complex Determines the Ultimate Fate of the Internalized ReceptorJournal of Biological Chemistry, 2003
- Functional expression of CCR2 by human fetal astrocytesJournal of Neuroscience Research, 2002
- Distribution, cellular localization and functional role of CCR2 chemokine receptors in adult rat brainJournal of Neurochemistry, 2002
- Baicalein protects cortical neurons from β-amyloid (25-35) induced toxicityNeuroReport, 2001
- Characterization and visualization of [125I] stromal cell-derived factor-1α binding to CXCR4 receptors in rat brain and human neuroblastoma cellsJournal of Neuroimmunology, 2000
- Cultured rat microglia express functional β-chemokine receptorsJournal of Neuroimmunology, 1999
- Differential Regulation of G-protein-mediated Signaling by Chemokine ReceptorsJournal of Biological Chemistry, 1996
- Signal Transduction and Ligand Specificity of the Human Monocyte Chemoattractant Protein-1 Receptor in Transfected Embryonic Kidney CellsJournal of Biological Chemistry, 1995
- Characterization of neurotensin binding sites on rat mesencephalic cells in primary cultureDevelopmental Brain Research, 1991