Vesicular stomatitis virus glycoprotein, albumin, and transferrin are transported to the cell surface via the same Golgi vesicles.

Abstract
Human hepatoma cells, infected by vesicular stomatitis virus, offer a good system to study simultaneously the intracellular localization of a well defined transmembrane glycoprotein (VSV-G), a secretory glycoprotein (transferrin), and a nonglycosylated secretory protein (albumin). We used monospecific antibodies in combination with 5- and 8-nm colloidal gold particles complexed with protein A to immunolabel these proteins simultaneously in thin frozen sections of hepatoma cells. VSV-G, transferrin, and albumin are present in the same rough endoplasmic reticulum cisternae, the same Golgi compartments, and the same secretory vesicles. In the presence of the ionophore monensin intracellular transport is blocked at the trans cisternae of the Golgi complex, and VSV-G, transferrin, and albumin accumulate in dilated cisternae, which are apparently derived from the trans-Golgi elements. Glycoproteins, synthesized and secreted in the presence of monensin, are less acidic than those in control cultures. This is probably caused by a less efficient contact between the soluble secretory proteins and the membrane-bound glycosyltransferases that are present in the most monensin-affected (trans) Golgi cisternae.