Abstract
Haploidy induction through anther culture has been examined in Datura metel and rice with a view to tracing the precise sequence of development of the pollen, either directly or through an intervening callus, into an embryo and seedling. In D. metel, the vegetative cell of the young pollen grain assumes the major role in formation of embryos whereas the generative cell and its few derivatives degenerate. Embryos and seedlings arising directly from pollen without an intervening callus phase always proved to be haploids, whereas those differentiating from pollen-derived callus gave haploid, diploid and even triploid plants. Cytological analysis of callus tissue showed cells of various ploidy levels ranging from haploid to triploid, and in rare instances even with higher chromosome numbers. In rice anther cultures the embryoids arose from an initial callus phase. Of 15 different rice cultivars tried, only four produced a callus, and in only one, was there differentiation of plants, both haploid and diploid ones. Among other species tried, egg plant has also yielded plantlets through a callus phase whereas only callus production has been achieved in jute, tea and petunia. No response has been obtained in wheat, maize, cotton and coconut. Coconut milk (CM) appears to be the most important component of the medium for the initial induction of embryoids and callus in anther cultures of most of the species tried. However, further growth and differentiation of plants may require a simpler medium; in D. metel, continued culture on CM led to dedifferntiation.