Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation for a subcritical bifurcation

Abstract
We preent numerically obtained bounded solutions of the one-dimensional complex Ginzburg-Landau equation with a destabilizing cubic term and no stabilizing higher-order contributions. The boundedness results from competition between dispersion and nonlinear frequency renormalization. We find chaotic and also stationary and time-periodic states with spatial structure corresponding to a periodic array of pulses. An analytical description is presented. Possibly experimental results connected with the dispersive chaos found in binary-fluid mixtures can be explained.