Liquidus relations in Y–Ba–Cu oxides

Abstract
The liquidus relations in the system YO1.5–BaO–CuOx in air in the compositional region near the superconducting oxide YBa2Cu3Ox were studied by differential thermal analysis, x-ray diffraction, electron microprobe analysis, and visual observation. The temperatures of 11 invariant points and the corresponding reactions were determined. YBa2Cu3Ox was found to melt incogruently at 1015 °C to Y2BaCuO5, which in turn melts incongruently to Y2O3 at 1270 °C. These reactions mean that preparing the superconducting phase by melting and rapid cooling will result in the presence of these two phases as well. The peritectic reaction YBa2Cu3Ox + CuO⇉Y2BaCuO5 + liquid at 940 °C accounts for the observation of partial melting, improved synthesis purity, and grain growth at temperatures of 950 °C. The determination of these invariant temperatures and reactions provide insight into optimal processing conditions.