Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation

Abstract
CPEB is a sequence-specific RNA-binding protein that controls the polyadenylation-induced translation of mos and cyclin B1 mRNAs in maturing Xenopus oocytes. CPEB activity requires not only the phosphorylation of S174, but also the synthesis of a heretofore-unknown upstream effector molecule. We show that the synthesis of RINGO/Spy, an atypical activator of cyclin-dependent kinases (cdks), is necessary for CPEB-directed polyadenylation. Deletion analysis and mRNA reporter assays show that a cis element in the RINGO/Spy 3′UTR is necessary for translational repression in immature (G2-arrested) oocytes. The repression is mediated by 3′UTR Pumilio-Binding Elements (PBEs), and by its binding protein Pumilio 2 (Pum2). Pum2 also interacts with the Xenopus homolog of human Deleted for Azoospermia-like (DAZL) and the embryonic poly(A)-binding protein (ePAB). Following the induction of maturation, Pum2 dissociates not only from RINGO/Spy mRNA, but from XDAZL and ePAB as well; as a consequence, RINGO/Spy mRNA is translated. These results demonstrate that a reversible Pum2 interaction controls RINGO/Spy mRNA translation and, as a result, CPEB-mediated cytoplasmic polyadenylation.